Wednesday, November 25, 2009

The Extremely Large Telescope

The European Southern Observatory (ESO) is planning on building a massive telescope in the next decade. The European Extremely Large Telescope (E-ELT) is a 42-meter telescope in its final planning stages. Weighing in at 5,000 tonnes, and made up of 984 individual mirrors, it will be able to image the discs of extrasolar planets and resolve individual stars in galaxies beyond the Local Group! By 2018 ESO hope to be using this gargantuan scope to stare so deep into space that they can actually see the Universe expanding!

The E-ELT is currently scheduled for completion around 2018 and when built it will be four times larger than anything currently looking at the sky in optical wavelengths and 100 times more powerful than the Hubble Space Telescope – despite being a ground-based observatory.

With advanced adaptive optics systems, the E-ELT will use up to 6 laser guide stars to analyse the twinkling caused by the motion of the atmosphere. Computer systems move the 984 individual mirrored panels up to a thousand times a second to cancel out this blurring effect in real time. The result is an image almost as crisp as if the telescope were in space.

This combination of incredible technological power and gigantic size mean that that the E-ELT will be able to not only detect the presence of planets around other stars but also begin to make images of them. It could potentially make a direct image of a Super Earth (a rocky planet just a few times larger than Earth). It would be capable of observing planets around stars within 15-30 light years of the Earth – there are almost 400 stars within that distance!

The E-ELT will be able to resolve stars within distant galaxies and as such begin to understand the history of such galaxies. This method of using the chemical composition, age and mass of stars to unravel the history of the galaxy is sometimes called galactic archaeology and instruments like the E-ELT would lead the way in such research.

Incredibly, by measuring the redshift of distant galaxies over many years with a telescope as sensitive as the E-ELT it should be possible to detect the gradual change in their doppler shift. As such the E-ELT could allow humans to watch the Universe itself expand!

ESO has already spent millions on developing the E-ELT concept. If it is completed as planned then it will eventually cost about €1 billion. The technology required to make the E-ELT happen is being developed right now all over the world – in fact it is creating new technologies, jobs and industry as it goes along. The telescope's enclosure alone presents a huge engineering conundrum – how do you build something the size of modern sports stadium at high altitude and without any existing roads? They will need to keep 5,000 tonnes of metal and glass slewing around smoothly and easily once it's operating – as well as figuring out how to mass-produce more than 1200 1.4m hexagonal mirrors.

The E-ELT has the capacity to transform our view not only of the Universe but of telescopes and the technology to build them as well. It will be a huge leap forward in telescope engineering and for European astronomy it will be a massive 42m jewel in the crown.

Source: universe today

Tuesday, November 24, 2009

Soal OSN Astronomi 2009 - Essay Teori

  1. Koordinat Antares adalah α= 16h 29m 24,40s , δ = -26° 25′ 55.0″. Tentukanlah waktu sideris pada saat bintang Antares terbit dan terbenam di Jakarta (φ = -6° 10′ 28″), dan abaikan refraksi oleh atmosfer Bumi.
  2. Untuk menentukan waktu menanam padi pada tahun ini, seorang petani yang berada di kota A (λ = 7h 10m 27s BT dan φ = -6° 49′) menggunakan posisi gugus bintang Pleiades (α = 3h 47m dan δ = 20° 7′) yang diamati pada jam 7 malam waktu lokal. Kebiasaan ini telah dilakukan oleh para petani di pulau Jawa sejak abad ke-17. Pengamatannya dilakukan dengan menggunakan selongsong bambu yang diisi penuh dengan air, dan diarahkan ke gugus bintang Pleiades di arah timur. Volume air yang tumpah akan menandai posisi Pleiades cukup tinggi untuk dimulai musim menanam padi pada tahun tersebut. Jika panjang selongsong bambu adalah 100 cm dan diameternya 10 cm, dan selongsong tersebut diisi air sampai penuh. Kemudian diarahkan ke Pleiades, dan ternyata air yang tumpah sebanyak 0,785 liter. Tentukan kapan waktu pengamatan Pleiades yang dilakukan petani tersebut?
  3. Angin matahari yang isotropik (sama ke segala arah) menyebabkan laju kehilangan massa matahari 3×10-14 MMatahari setiap tahunnya.
    1. Berapa massa yang di’tangkap’ setiap hari oleh Bumi ketika mengelilingi matahari?
    2. Berapa persen pertambahan berat badan kita setiap hari akibat pertambahan massa bumi yang disebabkan oleh angin matahari ini?
  4. Pada saat sebuah bintang masif meledak menjadi sebuah supernova, maka bintang tersebut akan bertambah terang dalam waktu yang singkat dengan luminositasnya 40 milyar kali lebih besar daripada luminositas Matahari. Jika supernova seperti itu tampak di langit seterang Matahari, berapakah jarak supernova tersebut?
  5. Pengamatan pada panjang gelombang radio pada suatu awan gas yang berputar disekeliling sebuah lubang hitam (black hole) yang berada di pusat galaksi X memperlihatkan bahwa radiasi yang berasal dari transisi hidrogen (frekuensi diamnya = 1420 MHz) terdeteksi pada frekuensi 1421,23 MHz.
    1. Hitunglah kecepatan awan ini dan apakah awan ini bergerak menuju atau menjauhi kita?
    2. Jika awan gas ini berada 0,2 pc dari lubang hitam, dan orbitnya berupa lingkaran, hitunglah massa lubang hitam.
Silakan didiskusikan dengan teman maupun tutor Anda.
Selain itu, bisa dibandingkan pula dengan jawaban versi salah satu peserta peraih medali Emas OSN 2009 kemarin:
  1. Jawaban nomor 1
  2. Jawaban nomor 2
  3. Jawaban nomor 3
  4. Jawaban nomor 4
  5. Jawaban nomor 5

Monday, November 23, 2009

More on Leonid Meteor Shower 2009

The year 2009 will not see a Leonid storm, but an outburst for sure. There are still some uncertainties regarding the time of maximum of the 1466 trail. For those of you seeking a definitive date and time, it isn't always possible, but we can learn a whole lot about when and where to look.
The Leonid Meteor Shower belongs to the debris shed by comet 55/P Tempel-Tuttle as it passes our Sun in its 33.2 year orbit. Although it was once assumed it would simply be about 33 years between the heaviest "showers," we later came to realize the debris formed a cloud which lagged behind the comet and dispersed irregularly. With each successive pass of Tempel-Tuttle, new filaments of debris are left in space along with the old ones, creating different "streams" the orbiting Earth passes through at varying times, which makes blanket predictions unreliable at best. Each year during November, we pass through the filaments of its debris – both old and new ones – and the chances of impacting a particular stream from any one particular year of Tempel-Tuttle's orbit becomes a matter of mathematical estimates. We know when it passed… We know where it passed. But will we encounter it and to what degree? Traditional dates for the peak of the Leonid meteor shower occur as early as the morning of November 17 and as late as November 19.

So what can we expect this year? According to NASA's 2009 predictions a significant shower is expected this year when Earth crosses the 1466-dust and 1533-dust ejecta of comet 55P/Tempel-Tuttle. According to J. Vaubaillon, the narrow (about 1-hr) shower is expected to peak on November 17, 2009, at 21:43 (1466) and 21:50 (1533) UT, perhaps 0.5 to 1.0 hour later based on a mis-match in 2008, with rates peaking at about ZHR = 115 + 80 = 195/hr (scaled to rates observed in 2008). E. Lyytinen, M. Maslov, D. Moser, and M. Sato all predict similar activity from both trails, combining to about ZHR = 150 – 300 /hr. P. Jenniskens notes that if the calculated trail pattern is slightly shifted in the same manner as observed before, then the 1533-dust trail would move in Earth's path and its rates would be higher (the 1466-dust trail would move away). However, the 1533-dust trail is distorted in the models, and because of that it is not clear how much higher that would be. This remains a rare opportunity to study old dust trails from comet 55P/Tempel-Tuttle. In such old trails, the model of Lyytinen and Nissinen predicts wide trails, which can be tested by measuring the width of the outburst profile.
Let's take a closer look at the at how the two centuries old trails will affect our observing, beginning with the one created in the year 1466. The exact same trail will be encountered again this year with its maximum rate of up to 115 meteors per hour occurring at 21:43 UT (may be 0.5-1hr later). "The trail will be much closer to the Earth, explaining why we expect a quite high zenith hourly rate." say J. Vaubaillon (et al), "However the discrepancy between the expected time of maximum remains, as well as a general higher expected ZHR. Among the possible explanations are: sensitivity to initial conditions (given that the trail is 16 Rev. old) or change of cometary activity (impossible to verify unfortunately)."
But don't count on only this single trail, because the year 1533 trail will encounter the Earth at almost the same time as the 1466 trail. Its maximum time of arrival is expected to be at 21:50 UT on the 17th of November, with a zenith hourly rate of 80 – for a combined rate of perhaps 200 meteors per hour. "The total level of the shower (ZHR~200/hr) was callibrated using the 2008 observations of the 1466 trail, but nothing is known from the 1533 trail. As a consequence, it will be very interesting to check." comments Vaubaillon, "In particular there might be a difference of up to 1 hour between the 1466 and 1533 trail, or they might even be late together, giving us some insight about how well/poorly we know comet 55P's orbit."

Let's take a closer look with 3D-view of the two trails may have evolved between 1466 and 2009.

Dr. Vaubaillon's colleagues from MSFC (D. Moser and B. Cooke) pointed out that the best location to view the outburst caused by the 1466 and 1533 trails will be centered around India and includes: Nepal, Thailand, Western China, Tadjikistan, Afghanistan, Eastern Iran, South Central Russia, etc. Dr. P. Atreya (IMCCE), citizen of Nepal, is currently organizing an international Leonid observation campaign in his home country. This campaign will involve many amateurs and researchers from Nepal and other countries. The climate conditions in Nepal at this time of the year makes it an excellent spot.

We may never know precisely where and when the Leonids might strike, but we do know that a good time to look for this activity is well before dawn on November 17, 18 and 19. Where do you look? For most of us, the best position will be to face east and look overhead.

Source: Universe today

A trivia question:
Can you calculate how thick the meteor cloud based on information given?

Thursday, November 19, 2009

Leonid Meteor Shower 2009

Bagi Anda yang tidak sempat menyaksikan Leonid Meteor Shower kemarin, silakan saksikan beberapa video yang berkaitan berikut ini.

The Leonid shower is made of bits of debris from the Tempel-Tuttle comet, which streaks through Earth's inner solar system every 33 years.

It leaves a stream of debris in its wake. Forecasters, however, say it's hard to know exactly how many of the meteors will be visible.

This year's Leonid meteor shower will peak early Tuesday, forecasters say, producing mild but pretty sparks over the United States and a more intense outburst over Asia.

Time lapse sequence between the hours of 4:30 UT and 13:30 UT November 17 (10:30PM-7:30AM CST in Manitoba, Canada) looking towards the zenith in a suburban back yard. There are few meteors visible. Most of the streaks in this movie sequence are airplanes.

Source: youtube

Friday, November 13, 2009

Black Dwarf

A black dwarf is a white dwarf that has cooled down to the temperature of the cosmic microwave background, and so is invisible. A white dwarf is what remains of a main sequence star of low or medium mass (below approximately 9 to 10 solar masses), after it has either expelled or fused all the elements which it has sufficient temperature to fuse. Unlike red dwarfs, brown dwarfs, and white dwarfs, black dwarfs are entirely hypothetical.

Once a star has evolved to become a white dwarf, it no longer has an internal source of heat, and is shining only because it is still hot. Like something taken from the oven, left alone a white dwarf will cool down until it is the same temperature as its surroundings. Unlike tonight's dinner, which cools by convection, conduction, and radiation, a white dwarf cools only by radiation.

Because it's electron degeneracy pressure that stops it from collapsing to become a black hole, a white dwarf is a fantastic conductor of heat (in fact, the physics of Fermi gasses explains the conductivity of both white dwarfs and metals!). How fast a white dwarf cools is thus easy to work out … it depends on only its initial temperature, mass, and composition (most are carbon plus oxygen; some maybe predominantly oxygen, neon and magnesium; others helium). Oh, and as at least part of the core of a white dwarf may crystallize, the cooling curve will have a bit of a bump around then.

The universe is only 13.7 billion years old, so even a white dwarf formed 13 billion years ago (unlikely; the stars which become white dwarfs take a billion years, or so, to do so) it would still have a temperature of a few thousand degrees. The coolest white dwarf observed to date has a temperature of a little less than 3,000 K. A long way to go before it becomes a black dwarf.

Working out how long it would take for a white dwarf to cool to the temperature of the CMB is actually quite tricky. Why? Because there are lots of interesting effects that may be important, effects we cannot model yet. For example, a white dwarf will contain some dark matter, and at least some of that may decay, over timespans of quadrillions of years, generating heat. Perhaps diamonds are not forever (protons too may decay); more heat. And the CMB is getting cooler all the time too, as the universe continues to expand.

Anyway, if we say, arbitrarily, that at 5 K a white dwarf becomes a black dwarf, then it'll take at least 10^15 years for one to form.

However, if weakly interacting massive particles exist, it is possible that interactions with these particles will keep some white dwarfs much warmer than this for approximately 10^25 years. If protons are not stable, white dwarfs will also be kept warm by energy released from proton decay. For a hypothetical proton lifetime of 10^37 years, Adams and Laughlin calculate that proton decay will raise the effective surface temperature of an old one-solar mass white dwarf to approximately 0.06 K. Although cold, this is thought to be hotter than the temperature that the cosmic background radiation will have 10^37 years in the future

One more thing: no white dwarf is totally alone; some have binary companions, others may wander through a dust cloud … the infalling mass generates heat too, and if enough hydrogen builds up on the surface, it may go off like a hydrogen bomb (that's what novae are!), warming the white dwarf quite a bit.

If black dwarfs were to exist, they would be extremely difficult to detect, since, by definition, they would emit very little radiation. One theory is that they might be detectable through their gravitational influence.

Source: universetoday and wikipedia

Thursday, November 12, 2009

Sun's Lithium Mistery

For decades, astronomers have known our Sun contains a low amount of lithium, while other solar-like stars actually have more. But they didn't know why. By looking at stars similar to the Sun to study this anomaly, scientists have now discovered of a trend: the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars. “The explanation of this 60 year-long puzzle is for us rather simple,” said Garik Israelian, lead author on a paper appearing in this week's edition of Nature. “The Sun lacks lithium because it has planets.

This finding sheds light not only on the lack of lithium in our star, but also provides astronomers with a very efficient way of finding stars with planetary systems.

Isrealian and his team took a census of 500 stars, 70 of which are known to host planets, and in particular looked at Sun-like stars, almost a quarter of the whole sample. Using ESO’s HARPS spectrograph, a team of astronomers has found that Sun-like stars that host planets have destroyed their lithium much more efficiently than “planet-free” stars.

“For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins,” Israelian said. "We now have found that the amount of lithium in Sun-like stars depends on whether or not they have planets.”

These stars have been "very efficient at destroying the lithium they inherited at birth,” said team member Nuno Santos. “Using our unique, large sample, we can also prove that the reason for this lithium reduction is not related to any other property of the star, such as its age.”

Unlike most other elements lighter than iron, the light nuclei of lithium, beryllium and boron are not produced in significant amounts in stars. Instead, it is thought that lithium, composed of just three protons and four neutrons, was mainly produced just after the Big Bang, 13.7 billion years ago. Most stars will thus have the same amount of lithium, unless this element has been destroyed inside the star.

This result also provides the astronomers with a new, cost-effective way to search for planetary systems: by checking the amount of lithium present in a star astronomers can decide which stars are worthy of further significant observing efforts.

Now that a link between the presence of planets and curiously low levels of lithium has been established, the physical mechanism behind it has to be investigated. “There are several ways in which a planet can disturb the internal motions of matter in its host star, thereby rearrange the distribution of the various chemical elements and possibly cause the destruction of lithium," said co-author Michael Mayor. " It is now up to the theoreticians to figure out which one is the most likely to happen.”

Source: Universetoday